Modelo matemático

En ciencias aplicadas, un Modelo matemático es uno de los tipos de modelos científicos, que emplea algún tipo de formulismo matemático para expresar relaciones, proposiciones sustantivas de hechos, variables, parámetros, entidades y relaciones entre variables y/o entidades u operaciones, para estudiar comportamientos de sistemas complejos ante situaciones difíciles de observar en la realidad. El término modelización matemática es utilizada también en diseño gráfico cuando se habla de modelos geométricos de los objetos en dos (2D) o tres dimensiones (3D).

El significado de modelo matemático en matemática fundamental, sin embargo, es algo diferente. En concreto en matemáticas se trabajan con modelos formales. Un modelo formal para una cierta teoría matemática es un conjunto sobre el que se han definido un conjunto de relaciones unarias, binarias y trinarias, que satisface las proposiciones derivadas del conjunto de axiomas de la teoría. La rama de la matemática que se encarga de estudiar sistemáticamente las propiedades de los modelos es la teoría de modelos.

Clasificaciones de los modelos

Se podría decir que un modelo de las ciencias físicas es una traducción de la realidad física de un sistema en términos matemáticos, es decir, una forma de representar cada uno de los tipos entidades que intervienen en un cierto proceso físico mediante objetos matemáticos. Las relaciones matemáticas formales entre los objetos del modelo, deben representar de alguna manera las relaciones reales existentes entre las diferentes entidades o aspectos del sistema u objeto real. Así una vez “traducido” o “representado” cierto problema en forma de modelo matemático, se pueden aplicar el cálculo, el álgebra y otras herramientas matemáticas para deducir el comportamiento del sistema bajo estudio. Un modelo físico requerirá por tanto que se pueda seguir el camino inverso al modelado, permitiendo reinterpretar en la realidad las predicciones del modelo.

 Según la información de entrada

Con respecto a la función del origen de la información utilizada para construir los modelos pueden clasificarse de otras formas. Podemos distinguir entre modelos heurísticos y modelos empíricos:

  • Modelos heurísticos (del griego euriskein ‘hallar, inventar’). Son los que están basados en las explicaciones sobre las causas o mecanismos naturales que dan lugar al fenómeno estudiado.
  • Modelos empíricos (del griego empeirikos relativo a la ‘experiencia’). Son los que utilizan las observaciones directas o los resultados de experimentos del fenómeno estudiado.

Según el tipo de representación

Además los modelos matemáticos encuentran distintas denominaciones en sus diversas aplicaciones. Una posible clasificación puede atender a si pretenden hacer predicciones de tipo cualitativo o pretende cuantificar aspectos del sistema que se está modelizando:

  • Modelos cualitativos o conceptuales, estos pueden usar figuras, gráficos o descripciones causales, en general se contentan con predecir si el estado del sistema irá en determinada dirección o si aumentará o disminuirá alguna magnitud, sin importar exactamente la magnitud concreta de la mayoría de aspectos.
  • Modelos cuantitativos o numéricos, usan números para representar aspectos del sistema modelizado, y generalmente incluyen fórmulas y algoritmos matemáticos más o menos complejos que relacionan los valores numéricos. El cálculo con los mismos permite representar el proceso físico o los cambios cuantitativos del sistema modelado.

Según la aleatoriedad

Otra clasificación independiente de la anterior, según si a una entrada o situación inicial concreta pueden corresponder o no diversas salidas o resultados, en este caso los modelos se clasifican en:

  • Determinista. Se conoce de manera puntual la forma del resultado ya que no hay incertidumbre. Además, los datos utilizados para alimentar el modelo son completamente conocidos y determinados.
  • Estocástico. Probabilístico, que no se conoce el resultado esperado, sino su probabilidad y existe por tanto incertidumbre.

 Clasificación según su aplicación u objetivo

Por su uso suelen utilizarse en las siguientes tres áreas, sin embargo existen muchas otras como la de finanzas, ciencias etc.

  • Modelo de simulación o descriptivo, de situaciones medibles de manera precisa o aleatoria, por ejemplo con aspectos de programación líneal cuando es de manera precisa, y probabilística o heurística cuando es aleatorio. Este tipo de modelos pretende predecir qué sucede en una situación concreta dada.
  • Modelo de optimización. Para determinar el punto exacto para resolver alguna problemática administrativa, de producción, o cualquier otra situación. Cuando la optimización es entera o no lineal, combinada, se refiere a modelos matemáticos poco predecibles, pero que pueden acoplarse a alguna alternativa existente y aproximada en su cuantificación. Este tipo de modelos requiere comparar diversas condiciones, casos o posibles valores de un parámetro y ver cual de ellos resulta óptimo según el criterio elegido.
  • Modelo de control. Para saber con precisión como está algo en una organización, investigación, área de operación, etc. Este modelo pretende ayudar a decidir qué nuevas medidas, variables o qué parámetros deben ajustarse para lograr un resultado o estado concreto del sistema modelado.

 Ejemplos

Un modelo mixto operacional estadístico es una teoría o situación causal de hechos y expresado con símbolos de formato matemático. Por ejemplo las tablas de contingencia. De hecho los modelos matemáticos se construyen con varios niveles de significación y con diferentes variables.

Kendall y Buckland catalogan hasta 40 tipos diferentes de modelos matemáticos. Ejemplos: Rapoport en modelo matemático e interacción social en 1961 y Bugeda en Sociología matemática en 1970. Por un principio de isomorfismo hay una equivalencia, a conseguir, entre un modelo y una teoría. Además teoría y modelo son sinónimos.

 Ejemplos de modelos por tipos

  Descriptivos / Simulación Optimización / Elección Control / Tratamiento
Determinista Probabilista Determinista Probabilista Determinista Probabilista
Cuantitativo Cálculos
astronómicos
Simulaciones
de tráfico
Cálculo componentes
de sistemas
Diseño ingenieril Control
automático
 ?
Cualitativo Análisis
microeconómicos
Teoría de
juegos
Modelos
de grafo/flujo
 ? Teoría
psicológica
 ?

Modelo matemático de simulación

Se utilizan para estudiar situaciones extremas, difícilmente observables en la realidad, como por ejemplo los efectos de precipitaciones muy intensas y prolongadas en cuencas hidrográficas, en su estado natural, o en las que se ha intervenido con obras como canales, represas, diques de contención, puentes, etc.

La cuenca hidrográfica es dividida en sub-cuencas consideradas homogéneas desde el punto de vista: del tipo de suelo, de la declividad, de su cobertura vegetal. El número y tipo de las variables hidrológicas que intervienen en el modelo son función de objetivo específico para el cual se elabora el mismo.

 Fases de construcción de un modelo

En muchos casos la construcción o creación de modelos matemáticos útiles sigue una serie de fases bien determindas:

  1. Identificación de un problema o situación compleja que necesita ser simulada, optimizada o controlada y por tanto requeriría un modelo matemático predictivo.
  2. Elección del tipo de modelo, esto requiere precisar qué tipo de respuesta u output pretende obtenerse, cuales son los datos de entrada o factores relevantes, y para qué pretende usarse el modelo. Esta elección debe ser suficientemente simple como para permitir un tratamiento matemático asequible con los recursos disponibles. Esta fase requiere además identificar el mayor número de datos fidedignos, rotular y clasificar las incógnitas (variables independientes y dependientes) y establecer consideraciones, físicas, químicas, geométricas, etc. que representen adecuadamente el fenómeno en estudio.
  3. Formalización del modelo en la que se detallarán qué forma tienen los datos de entrada, qué tipo de herramienta matemática se usará, como se adaptan a la información previa existente. También podría incluir la confección de algoritmos, ensamblaje de archivos informáticos, etc, etc. En esta fase posiblemente se introduzcan también simplificaciones suficientes para que el problema matemático de modelización sea tratable computacionalmente.
  4. Comparación de resultados los resultados obtenidos como predicciones necesitan ser comparados con los hechos observados para ver si el modelo está prediciendo bien. Si los resultados no se ajustan bien, frecuentemente se vuelve a la fase 1.

Es importante mencionar que la inmensa mayoría de modelos matemáticos no son exactos y tienen un alto grado de idealización y simplificación, ya que una modelización muy exacta puede ser más complicada de tratar de una simplificación conveniente y por tanto menos útil. Es importante recordar que el mecanismo con que se desarrolla un modelo matemático repercute en el desarrollo de otras tecnicas de conocimientos enfocadas al area socio-cultural.

METODO SIMPLEX CON WINQSB

 

Ejercicios:

EL METODO SIMPLEX PARA SOLUCIÓN DE PROBLEMAS DE PROGRAMACIÓN LINEAL

Es un procedimiento iterativo que permite ir mejorando la solución a cada paso. El proceso concluye cuando no es posible seguir mejorando más dicha solución. Partiendo del valor de la función objetivo en un vértice cualquiera, el método consiste en buscar sucesivamente otro vértice que mejore al anterior. La búsqueda se hace siempre a través de los lados del polígono (o de las aristas del poliedro, si el número de variables es mayor). Cómo el número de vértices (y de aristas) es finito, siempre se podrá encontrar la solución.

El método del simplex se basa en la siguiente propiedad: si la función objetivo, f, no toma su valor máximo en el vértice A, entonces hay una arista que parte de A, a lo largo de la cual f aumenta.

El método del simplex fue creado en 1947 por el matemático George Dantzig . El método del simplex se utiliza, sobre todo, para resolver problemas de programación lineal en los que intervienen tres o más variables.

El álgebra matricial y el proceso de eliminación de Gauss-Jordan para resolver un sistema de ecuaciones lineales constituyen la base del método simplex.

Con miras a conocer la metodología que se aplica en el Método SIMPLEX, vamos a resolver el siguiente problema: 

Maximizar Z= f(x,y)= 3x + 2y
sujeto a: 2x + y 18
  2x + 3y  42
  3x + y 24
  x0 , y 0

Se consideran las siguientes fases:

1. Convertir las desigualdades en igualdades

Se introduce una variable de holgura por cada una de las restricciones, para convertirlas en igualdades, resultando el sistema de ecuaciones lineales: 

2x + y + h = 18
2x + 3y + s = 42
3x +y + d = 24

2. Igualar la función objetivo a cero

- 3x – 2y + Z = 0

3. Escribir la tabla inicial simplex

En las columnas aparecerán todas las variables del problema y, en las filas, los coeficientes de las igualdades obtenidas, una fila para cada restricción y la última fila con los coeficientes de la función objetivo: 

Tabla I . Iteración nº 1 
Base Variable de decisión Variable de holgura Valores solución
  x y h s d  
h 2 1 1 0 0 18
s 2 3 0 1 0 42
d 3 1 0 0 1 24
Z -3 -2 0 0 0 0

4. Encontrar la variable de decisión que entra en la base y la variable de holgura que sale de la base

  1. Para escoger la variable de decisión que entra en la base, nos fijamos en la última fila, la de los coeficientes de la función objetivo y escogemos la variable con el coeficiente negativo mayor (en valor absoluto).
    En nuestro caso, la variable x de coeficiente – 3.
    Si existiesen dos o más coeficientes iguales que cumplan la condición anterior, entonces se elige uno cualquiera de ellos.

    Si en la última fila no existiese ningún coeficiente negativo, significa que se ha alcanzado la solución óptima. Por tanto, lo que va a determinar el final del proceso de aplicación del método del simplex, es que en la última fila no haya elementos negativos.

    La columna de la variable que entra en la base se llama columna pivote (En color azulado).
     

  2. Para encontrar la variable de holgura que tiene que salir de la base, se divide cada término de la última columna (valores solución) por el término correspondiente de la columna pivote, siempre que estos últimos sean mayores que cero. En nuestro caso:
          18/2 [=9] , 42/2 [=21] y 24/3 [=8]
    Si hubiese algún elemento menor o igual que cero no se hace dicho cociente. En el caso de que todos los elementos fuesen menores o iguales a cero, entonces tendríamos una solución no acotada y no se puede seguir.

    El término de la columna pivote que en la división anterior dé lugar al menor cociente positivo, el 3, ya 8 es el menor, indica la fila de la variable de holgura que sale de la base, d. Esta fila se llama fila pivote (En color azulado).

    Si al calcular los cocientes, dos o más son iguales, indica que cualquiera de las variables correspondientes pueden salir de la base.  
     

  3. En la intersección de la fila pivote y columna pivote tenemos el elemento pivote operacional, 3.

5. Encontrar los coeficientes de la nueva tabla.

Los nuevos coeficientes de x se obtienen dividiendo todos los coeficientes de la fila d por el pivote operacional, 3, que es el que hay que convertir en 1.

A continuación mediante la reducción gaussiana hacemos ceros los restantes términos de su columna, con lo que obtenemos los nuevos coeficientes de las otras filas incluyendo los de la función objetivo Z

También se puede hacer utilizando el siguiente esquema:

Fila del pivote:

Nueva fila del pivote= (Vieja fila del pivote) : (Pivote)

Resto de las filas:

Nueva fila= (Vieja fila) - (Coeficiente de la vieja fila en la columna de la variable entrante) X (Nueva fila del pivote)

Veámoslo con un ejemplo una vez calculada la fila del pivote (fila de x en la Tabla II):  

Vieja fila de s 2 3 0 1 0 42
  - - - - - -
Coeficiente 2 2 2 2 2 2
  x x x x x x
Nueva fila pivote 1 1/3 0 0 1/3 8
  = = = = = =
Nueva fila de s 0 7/3 0 1 -2/3 26

 

Tabla II . Iteración nº 2
Base Variable de decisión Variable de holgura Valores solución
  x y h s d  
h 0 1/3 1 0 -2/3 2
s 0 7/3 0 1 -2/3 26
x 1 1/3 0 0 1/3 8
Z 0 -1 0 0 1 24

Como en los elementos de la última fila hay uno negativo, -1, significa que no hemos llegado todavía a la solución óptima. Hay que repetir el proceso:

  1. La variable que entra en la base es y, por ser la variable que corresponde al coeficiente -1
  2. Para calcular la variable que sale, dividimos los términos de la última columna entre los términos correspondientes de la nueva columna pivote:
    2:1/3 [=6] , 26:7/3 [=78/7] y 8:1/3 [=8]
    y como el menor cociente positivo es 6, tenemos que la variable de holgura que sale es h.
  3. El elemento pivote, que ahora hay que hacer 1, es 1/3.

Operando de forma análoga a la anterior obtenemos la tabla: 

Tabla III . Iteración nº 3
Base Variable de decisión Variable de holgura Valores solución
  x y h s d  
y 0 1 3 0 -2 6
s 0 0 -7 0 4 12
x 1 0 -1 0 1 6
Z 0 0 3 0 -1 30

Como en los elementos de la última fila hay uno negativo, -1, significa que no hemos llegado todavía a la solución óptima. Hay que repetir el proceso:

  1. La variable que entra en la base es d, por ser la variable que corresponde al coeficiente -1
  2. Para calcular la variable que sale, dividimos los términos de la última columna entre los términos correspondientes de la nueva columna pivote:
    6/(-2) [=-3] , 12/4 [=3], y 6:1 [=6]
    y como el menor cociente positivo es 3, tenemos que la variable de holgura que sale es s.
  3. El elemento pivote, que ahora hay que hacer 1, es 4.

Obtenemos la tabla: 

Tabla IV . Final del proceso
Base Variable de decisión Variable de holgura Valores solución
  x y h s d  
y 0 1 -1/2 0 0 12
d 0 0 -7/4 0 1 3
x 1 0 -3/4 0 0 3
Z 0 0 5/4 0 0 33

Como todos los coeficientes de la fila de la función objetivo son positivos, hemos llegado a la solución óptima.

Los solución óptima viene dada por el valor de Z en la columna de los valores solución, en nuestro caso: 33. En la misma columna se puede observar el vértice donde se alcanza, observando las filas correspondientes a las variables de decisión que han entrado en la base: D(3,12) 

* Si en el problema de maximizar apareciesen como restricciones inecuaciones de la forma: ax + by  c; multiplicándolas por – 1 se transforman en inecuaciones de la forma – ax – by  - c y estamos en el caso anterior * Si en lugar de maximizar se trata de un problema de minimizar se sigue el mismo proceso, pero cambiando el sentido del criterio, es decir, para entrar en la base se elige la variable cuyo valor, en la fila de la función objetivo, sea el mayor de los positivos y se finalizan las iteraciones cuando todos los coeficientes de la fila de la función objetivo son negativos 

 

  Interpretación geométrica del método del simplex 

Las sucesivas tablas que hemos construido van proporcionando el valor de la función objetivo en los distintos vértices, ajustándose, a la vez, los coeficientes de las variables iniciales y de holgura.

En la primera iteración (Tabla I) han permanecido todos los coeficientes iguales, se ha calculado el valor de la función objetivo en el vértice A(0,0), siendo este 0.

A continuación se desplaza por la arista AB, calculando el valor de f , hasta llegar a B. Interpretación geométrica del método (130x170 1.36Kb
Este paso aporta la
Tabla II.
En esta segunda iteración se ha calculado el valor que corresponde al vértice B(8,0): Z=f(8,0) = 24

Sigue por la arista BC, hasta llegar a C, donde se para y despliega los datos de la Tabla III.
En esta tercera iteración se ha calculado el valor que corresponde al vértice C(6,6) : Z=f(6,6)=30.

Continua haciendo cálculos a través de la arista CD, hasta llegar al vértice D. Los datos que se reflejan son los de la Tabla IV.
Concluye con esta tabla, advirtiendo que ha terminado (antes ha comprobado que la solución no mejora al desplazarse por la arista DE)
El valor máximo de la función objetivo es 33, y corresponde a x = 3 e y = 12 (vértice D).

Si calculas el valor de la función objetivo en el vértice E(0,14), su valor no supera el valor 33.

About these ads